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MODULATIONAL INSTABILITY OF WHISTLERS

IN COLD PLASMAS

by

A. L. Brinca

Institute for Plasma Research

Stanford University

Stanford, California 94305

ABSTRACT

The paper obtains the modulational stability spectrum of whistlers

in cold plasmas taking into consideration both ion motion and relativistic

effects. The unstable band is contiguous to O /4 and, depending on

the plasma density, lies above or below that frequency (O is the

electron cyclotron frequency of the static magnetic field). The relevance

of the instability to whistlers in the magnetosphere is discussed.
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1. INTRODUCTION

Propagation of finite amplitude waves in nonlinear dispersive media

gives rise to self-focusing [Akhmanov et al., 1966] and self-trapping

[Chiao et al., 1964] effects caused by the dependence of the dielectric

properties on the wave fields. The application of these self-action

effects to plasma waves has been primarily [Taniuti and Washimi, 1968;

Tam, 1969; Taniuti and Washimi, 1969; Litvak, 1970; Hasegawa, 1970a;

Hasegawa, 1970b], but not exclusively [Kakutani et al., 1967; Dysthe,

1968; Tang and Sivasubramanian, 1971; Dewar et al., 1972] concentrated

on cyclotron waves.

In this paper we study the modulational instability (self-trapping)

of electron cyclotron waves (whistler branch) in cold dense plasmas.

Previous work on this problem either neglected ion motion [Tam, 1969;

Tang and Sivasubramanian, 1971], or disregarded relativistic effects

[Taniuti and Washimi, 1968; Tam, 1969; Hasegawa, 1970a]. It will be

demonstrated that the simultaneous consideration of these two factors

alters the modulational stability spectrum of the wave trains in a funda-

mental way. Since the self-action effects in electron cyclotron waves

have been contemplated in the context of the magnetospheric [Litvak,

1970; Brinca, 1972] and solar wind [Hasegawa, 1972] plasmas, the deter-

mination of the modulational stability spectrum may have more than

academic interest.

In Section 2 we derive the equations obeyed by the (complex)

amplitude of the wave train envelope, assuming that the (linear and

nonlinear) dispersive properties of the medium are known. These equations

are used to establish the conditions required for the occurrence of

modulational instability. Section 3 applies the results to whistlers.

Section 4 discusses the (possible) occurrence of the modulational

instability in magnetospheric whistlers, speculating on the relevance

of this instability to some observed 'pulsations' [Bell and Helliwell,

1971] when a dilute energetic electron population permeates the cold

plasma.
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2. THE MODULATIONAL INSTABILITY

We consider one-dimensional propagation of a plasma mode in a

nonlinear dispersive medium that can be characterized, to lowest order

in the wave amplitude a , by the dispersion relation (i-> 0)

= a + ad , (1)

where .. = Q(k) is the linear dispersion relation and

4(k) ( 9a= (2)

characterizes the frequency shift caused by the dependence of the average

properties of the medium on the small, but finite, wave amplitude.

We assume the existence of an equilibrium state consisting of the

propagation along the z-axis of a wave with amplitude a0 , frequency

L0 and wavenumber ko , satisfying

QO O + 10o a (

with n
O

= Q(ko) and o0 = p(ko). To study the stability of this equi-

librium with respect to a modulational perturbation, we derive the

equation satisfied by the envelope (complex) amplitude of the wave train.

The perturbed wave train may be represented at t = 0 by

'(zO0) =1X dk ¢(k) exp(-ikz) , (4)

where ¢(k), the spatial Fourier transform of the initial wave, is

concentrated about k The subsequent temporal evolution of the wave

train is then obtained from

b(z,t) = dk (k) exp[i((t-kz)] , ()
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with W = w(k) given by (1). Using the first three terms of the Taylor

expansion of 0(k) about ko ) we can write (5) as

t(z,t) = C(z,t) exp[i(CO t - koz)] a (6)

where the envelope (complex) amplitude is

cp(z,t) = a(z,t) exp ie(z,t)

(7)

= X dK ~(K+ko) exp il[Kvg0 + 2 v + 2 o (a -a o)] t z t ,

and a (ko)
a C(k 0) 

Vg 0 = k Vg 0 = (8)

Differentiation of Cp with respect to t and z shows that the

envelope amplitude satisfies the equation

f - i fT-i(+VgO +) + 2 vg -2 - m (a -a0)cp= (9)at Vgo a+ 2 g 2 - 0

or, going to the packet wave frame with the introduction of new

variables, g = z - vg0t and T = t

2 i aev P 0 (ato-an) P = o . (10)
2 gO b52 0

This equation was previously derived through other methods, and

for B = 2 , by Karpman and Krushkal' [1969], Taniuti and Yajima [1969],

and Dysthe [1970]. It is identical to the Schrodinger equation with a

nonlinear potential term (note that a = JIl) and, as assumed at the

outset, admits Cp= ao as a solution. Separating real and imaginary

parts, we obtain



aJP , ap e , a M a 2e
-a go a g + vgO 2 2 =2

ae 1 2a 2 1 /

a T + gO 2 2- Vg a

A modulational perturbation about the

of the form

2 - 0
(t) - a(a"-ap) = O .

equilibrium a = a0 and e = 0 ,

a - ao = a1 exp i(F T - k t)

e = a1 exp i(n T - k )

al << ao '

(12)

«1 << 1

yields the linear dispersion relation

2 = (k v0/2)2 (-2 -i)

(13)

L = -2 ¢ aO o/vgo

When tO/vg0 < O , i.e., when the potential in the nonlinear Schr6dinger

equation becomes attractive, we note that the perturbations will be

linearly unstable (2 < O) if the modulation wave number satisfies

2 < k- . The maximal temporal (linear) growth rate is

and occurs for

iM 2 0 0 '

- (, 1/2.k =k =(/2)

We thus expect that wave trains in media satisfying , 0/v 0 < 0 will

be unstable when modulated by perturbations of sufficiently large wave-

length. The initial (linear) evolution of the instability will tend to

increase the depth of modulation, but the subsequent (nonlinear) behavior

of the unstable wave train must be followed numerically. This has been

5
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done in a few cases for B = 2 [Karpman and Krushkal', 1969; Hasegawa,

1c)O0a] , and sometimes indicates the breaking up of the original wave

into a number of solitary waves (solitons) of stationary (envelope)

amplitude in the wave train frame. With respect to this evolution, it

is interesting to note that the (soliton-type for the amplitude)

expressions

aB = A2 sech
2

PA [- lo
(g+2)vo 03 (16)

0 = 0o [2A
2
/(B+2) - a T] T + 

where A, G0 and 0 are real constants, represent exact solutions of

(10) or (11). (These solutions were obtained by Chiao et al. .1964],

and Karpman and Krushkal' [1969] for the case B = 2 but. as stressed

in Section 4 below, observable modulational instabilities in magneto-

spheric whistlers will probably occur for D = 1/2.)
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3. THE WHISTLER CASE

For one-dimensional propagation along z in a two-component cold

magnetoplasma with constant magnetic field B = B z the equations of

motion, Maxwell and continuity determine the evolution of the system:

mj +t q + q x + B) =

1 1 aE
VX B=-q 1

2 qj j i j 2 t '

EC j=ie (17)

aB
VXE= at ' 

a
+ -z (nj v i) = .

The wave fields are A and E ; subscript j enumerates the electron

and ion variables; 0 and c represent the free space permittivity and

speed of light; we use q -e , v = v I and yj = (1 - v/c)

To proceed, we make several simplifications. First, the displacement

current is neglected and charge neutrality is assumed. This amounts to

dropping the last term of the second equation in (17), using ni = n = n
1 e

and (continuity equation) vi = v = v . The range of validity of these
Ili Ile II

approximations was analyzed by Kakutani et al. [1967] and includes our

domain of interest. The displacement current can be disregarded when

(dense plasma) c 2 >> , and charge neutrality is a good approximation
pe e'

for vA << c; the electron plasma and cyclotron frequencies, L and
Q·, and the Alfven velocity, vA , are defined by

, and the Alfven velocity, VA , are defined by
e, 
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2 I 22
ne 2q B eBc

w2 n 0ee 0 2 00 (18)
pe E0 me e,i m ' A n °

where nO is the unperturbed number density. The expression for vA

makes use of m. >> m ; this inequality will be utilized below and,
1 e

when combined with our interest in right-hand circularly polarized waves

of frequencies X) such that > 2 > a) i justifies disregarding the

relativistic ion mass correction, i.e., we will make yi = 1

Utilization of these simplifications in (17), and elimination of

the wave electric field and the ion velocity, leads to the following system

of equations

d H v 1
d - i a a d u

dt + H z [t (7eu) vA =

du v H + i A d ( aH
dt A n - dt n az

an a
+ z- (n v ) = 0 , (19)

2
dv v no 1

A n .r12-
_I +_ = 0

dt 2 n az

with

H = (B + iB )/B0 , u = (v + iVy)/v
A

dt 
(Bxf ~y/Bx dt A t + vii -

A possible solution of this system is

(I) = (o) = o
)
exp i()(ot-koz) , (20)

provided U) and k
0

satisfy the (relativistic) dispersion relation

8



2A + ( i)( Ye 0 (21)

with y= l- .I/c) 2Monochromatic whistlers of arbitrary

amplitude are exact solutions of (19) if their frequency and wavenumber

satisfy (21). We have thus found an equilibrium state similar to the

one used in Section 2 with p = 2. In particular, expanding y ,

e 1 + IUO 2vvA/2c , noting from (19) that 1uo 2
= (koVA/U0o) (l+2o0/i) 2IHOI

and considering whistlers with frequencies ~0 >> Qi , we can write the

relativistic dispersion relation (21) as

2W21 2% l(21)

° pe (1O/ne)2

where the linear dispersion relation

k2v2
k vA hco

=() - i -- c2 (Qe ) (22)

pe

defines

vg ( e vg 0 = 2 ° ( 1 - 4 i - - . (23)
0g 0 2 0 0 I e/ e

The relativistic frequency shift is characterized by

c3

= awu 220 ( g1 -W/h e )- 2 (24)

pe

showing that, if no other nonlinear effects were involved, the whistler

mode would be unstable to modulational perturbations (v;0/p0 < 0) for

frequencies c < K /4 . This result is at variance with the conclusions
e

of Tang and Sivasubramanian [1971] who did not take into account the

9



dependence of sgn vg0 on (/O , and derived a relativistic frequency
g0 e 2 2

shift that seems to be incorrect. [For dense plasmas, pe , it
`pe e

is independent of (1-00/Q e), ignoring the influence of the cyclotron

resonance on the electron velocity, Iuo|
I

(l-d0/Q) -. ]

However, the relativistic correction just considered is not the

only nonlinear effect contributing to the total frequency shift experienced

by the whistler train of finite amplitude. Although (19) admits (20)

as exact solutions subject to the dispersion relation (21), we note

[Taniuti and Washimi, 1968] that a superposition of two (or more) waves

satisfying (20) [with different frequencies and wavenumbers obeying

(21) ] is not a solution of (19). We are thus led to look for wave train

solutions of the form cp(z,t) exp i(W
0
t-k0z), where c is a slowly

varying function of time and space. Following the method of Taniuti

and Yajima [1969], it is found in the nonrelativistic case

(ye = 7i = 1) that the (nonlinear) perturbations in the number density

n ,and the creation of a nonzero v give rise to a further frequency

shift characterized by [Taniuti and Washimi, 1968]

"'bi - -H01 4 vg - 8 /e) (25)

This component of the frequency shift, in contrast to the relativistic

one, is positive and becomes zero when the ion motion is neglected

(mi ,- c n0i - 0). Hence, previous analyses [Tam, 1969] neglecting

relativistic effects and ion motion were led to attribute a zero fre-

quency shift, and modulational stability to whistlers propagating along

Bo . When ion motion is considered, but relativistic effects are ignored

[Taniuti and Washimi, 1968; Hasegawa, 1970a] the resulting positive

frequency shift leads to the conclusion that modulational instability

occurs for whistler frequencies D satisfying 0 /4 < C < Q . The
e e

actual modulational stability spectrum of the whistler train is obtained

by combining these two effects (ion motion and relativistic dynamics).

The total frequency shift is then characterized by

10



1 /C2 )_2(Q /4 _ W3/W2 (26)
PO : kOr + H'Oi = 2 O/e) i (26)

Recalling the.expression given in (23) for v g ,-and defining

Q3 C)~ 2 1/3

e 0 =e
-= - ! n@ Op < 1 (27)

p ' 16\ /

we find the following modulational stability spectrum for whistler 
trains

of frequency d(>> Qi) in cold dense plasmas (w2 >> ) . The unstable
1 p e

band in media with e > WL is given by dy > W > Q /4 e whereas for
pe p e

magnetoplasmas having Lpe < D ,Y instability arises in the band

0 /4 > c > w* . When We = XD ,no modulational instability occurs.

e Pc P

The importance of considering simultaneously the influence of 
ion

motion and relativistic dynamics when studying the whistler modulational

instability is stressed in Figure 1, where the stability spectra 
obtained

using simplifications are contrasted with the actual spectrum.
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4. DISCUSSION

The possible observation of the modulational instability in magneto-

spheric whistlers requires the existence of an unstable band and a

growth rate large enough to ensure the development of initial (large

wavelength) amplitude perturbations into 'pulsations'. (The instability

is most likely to occur in the equatorial portion of the whistler path,

due to both homogeneity and slower wave velocity.) Since o = 11.2 e
p e

for an electron-proton plasma, most magnetospheric L-shells have

Cp < c : the narrow unstable band will be Q /4 > c > ac*. Denoting
pe p e

by 6W(= I0 aP) the frequency shift experienced by the whistler in the

initial value problem, (in CW key-down transmission, the frequency,

rather than the wave number, is fixed and thus the shift occurs in k ,)

we find, from (14) that IciM I = 16WiP/2 . In the cold plasma case "0

is defined by (26), and a- = (B/Bo)2. Using 0^/ ~ 0.25 and

Xp/Q e 50 , we obtain 1681 6 1.6 X 10 e (B/B)2 The growth rate,

WiM I = 16M , is negligible since the amplitude of a 'high-field'
whistler [Dysthe, 19713 is B/B

0
- 10 . It is reasonable to conclude

that the whistler modulational instability due to the cold plasma

(nonlinear and dispersive) properties may not be observed in the

magnetosphere.

However, consideration of the dilute energetic electron population

may strongly enhance the growth rate of the whistler modulational insta-

bility. Based on the similarity of the evolution of Landau and whistler

waves in hot plasmas [Brinca, 1972], and recent results on the Landau

modulational instability [Dewar et al., 1972], we expect the whistler

frequency shift, 6W = Lo0a0 to have P = 1/2. The growth rate will

now be proportional to (B/Bo)/2

To facilitate the eventual interpretation of observed 'pulsations'

in terms of the modulational instability, we establish a relation between

measurable parameters and theoretical growth rates. Utilization of this

resplt may rule out the modulational instability as a source of observed

'pulsations', but cannot ensure the occurrence of the instability. For

this latter purpose, a detailed study of the whistler modulational

stability in hot plasmas is required and is now under consideration by

the author.
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The measured spatial and temporal periodicities of the 'pulsations'

define spatial and temporal frequencies which, if created by the modula-

tional instability, should approximate kM and rM(= im vgO). Using

(13)-(15) and (22),we find

2

~rM 11-WO/Ce(
|iM' |j (lM e) /(28)

As an example, the 'pulsations' reported by Bell and Helliwell [1971]

had, near the equator, 0/Q - 0.5 C 0/2c ~ 15 kHz and -rM/2~ 8 Hz,

yielding 'WiMi - 1. 3 X 10
- 2

sec
- 1

Noting that. the time required to

cross the (possibly modulational unstable) equatorial region is about

- 0.3 sec, we conclude that this growth rate is too small to explain

the observed pulsations. (Figure 1 shows the modulational stability

spectrum for cold plasmas; when an energetic electron population is

present, the stability spectrum depends on the characteristics of this

population and may be unstable for W0/QD 0.5.)
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